
Replicating and Mitigating Spectre Attacks on
an Open Source RISC-V Microarchitecture

CARRV 2019 – June 22nd, 2019 - Phoenix, Arizona
Abraham Gonzalez, Ben Korpan, Jerry Zhao, Ed Younis
Krste Asanović
University of California, Berkeley

Outline

• Motivation

• Open-source Approach to Hardware
• BOOM: Berkeley Out-of-Order Machine

• Replicating Spectre Attacks on BOOM

• Implementing a Speculation Buffer
• Comparisons

• Implementation

• Conclusion

Motivation

3

Exploits Everywhere

4

Why are Spectre-style attacks hard?

5

Target CPUs

• ARM

• Intel

• AMD

• RISC-V

• …

Leakage Mechanisms

• Conditional branch

• Indirect jump

• Return instructions

• Speculative store bypass

• Data speculation

• ...

Attack Scenarios

• User process attacks kernel

• User process attacks user space

• Intra-process sandbox escape

• User process attacks enclaves

• Remote timing attacks

• ...

Covert Channels

• Changes in cache state

• Power consumption

• Resource contention (FPUs, buffers)

• ...

Spectre

Variations

Taken from “Panel On the Implications of the Meltdown & Spectre Design Flaws”, ISCA 2018

Mitigation Approaches

InvisiSpec/SafeSpec: Blocking unsafe loads from altering the data cache

DAWG: Partition data cache between security domains

StealthMem/CATalyst: Hide visibility of a secure memory region

Context-based fencing: Dynamically stop speculation in secure code

Compiler-inserted fencing: Statically analyze program for Spectre-
vulnerable snippets

Lots of interesting approaches, but how to compare them?

Use them together?

6

M. Yan, et. al. 2018. InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy. In MICRO.
K. N. Khasawneh, et. al. 2018. Safespec: Banishing the spectre of a meltdown with leakage-free speculation. Archived.
V. Kiriansky, et. al. 2018. DAWG: A Defense Against Cache Timing Attacks in Speculative Execution Processors. In MICRO.
T. Kim, et. al. 2012. STEALTHMEM: System-Level Protection Against Cache-Based Side Channel Attacks in the Cloud. In USENIX.
F. Liu, et. al. 2016. CATalyst: Defeating last-level cache side channel attacks in cloud computing. In HPCA.
M. Taram, et. Al. 2019. Context-Sensitive Fencing: Securing Speculative Execution via Microcode Customization. In ASPLOS.
Microsoft. 2018. Microsoft’s compiler-level Spectre fix shows how hard this problem will be to solve. In Ars Technica.

Open-source Approach to Hardware

7

8

Open-source HW + Agile Design Tools + Fast
Simulation/Emulation = Security?

Large proliferation of open-source software stacks,
cores, and simulation/design infrastructure

The Open-source RISC-V Approach

1. Think of new security mitigation/exploit

2. Use open-source RTL to start implementation

3. Quickly iterate through design development
with easy, fast, and free tooling

4. Open-source work and have others scrutinize or
use your work

9

Security benefits from open-source work

10

Modern Microarchitectures

Commercial Spectre-vulnerable cores are complex,

out-of-order, and closed-source.

Need to do speculation-security research on an

equivalent open-source academic core.

Intel Sandy Bridge Intel Skylake ARM A76

BOOM: The Berkeley Out-of-Order Machine

11

• Open-source, out-of-order, superscalar
RISC-V core

• Runs RISC-V ISA RV64GC

• Linux-capable - boots Fedora + Buildroot

• Silicon-proven - taped out

• ~18K LoC of open-source Chisel RTL

• Highly parameterizable and configurable

• Full integration with Rocket Chip,
FireSim, HAMMER

12

BOOM Overview

J. Bachrach, et. al. 2012. Chisel: constructing hardware in a scala embedded language. In DAC.
K. Asanovic, et. al. 2016. The Rocket Chip Generator. Technical Report.
S. Karandikar, et. al. 2018. FireSim: FPGA-accelerated cycle-exact scale-out system simulation in the public cloud. In ISCA.
E. Wang, et. al. 2018. Hammer: Enabling Reusable Physical Design. In WOSET.

BOOM Microarchitecture

13

Replicating Spectre Attacks

14

Spectre v1 Overview

Speculation:

• Performance-seeking behavior of modern processors

• Execute instructions before we know they will commit

Side-channel:

• Microarchitectural state which holds interacts with program execution

• Caches, TLBs, power…

Typical Spectre attack:

1. Setup processor to misspeculate in victim code (e.g. train branch predictors)

2. Misspeculation leaks secret into a side channel

3. Attacker recovers secret from side channel

15P. Kocher, et. al. 2018. Spectre attacks: Exploiting speculative execution. Archived.

Steps:

1. Access if statement multiple times
correctly (predict if to fall-through)

2. Give x > array1_sz

3. Predict the if to be true and bring in
secret and array2 value

4. Use the time difference between
cached and uncached lines to
determine secret

5. Repeat!

Spectre v1 Example

if (x < array1_sz):

secret = array1[x]

out = array2[secret * amount]

array2

addresses

0*amount

1*amount

2*amount

3*amount

4*amount

...

array2

addresses

0*amount

1*amount

2*amount

3*amount

4*amount

...

before after

all

uncached cached

16

Components Needed – With BOOM?

• Branch Prediction
• Set associative BTB and GShare branch predictors

• Speculative Execution
• Out-of-order execution and branch kill masks for speculative execution

• Caching
• L1 data cache and a outer memory set to the latency of an L2 cache

• Cache Manipulation
• Custom-made L1 data cache clflush

BOOM provides all the elements to replicate Spectre!

17

18

Spectre v1 Running on FireSim

S. Karandikar, et. al. 2018. FireSim: FPGA-accelerated cycle-exact scale-out system simulation in the public cloud. In ISCA.

19

Implementing a Speculation Buffer

Problem: Load refills are not subject
to architectural guarantees

• Misspeculated loads leave side-
effects, creating a side-channel

Solution: Treat the data cache as
an architectural structure

• Only alter the cache state when
instructions commit

• Implement a working prototype in
BOOM RTL

21

Protecting Data Caches

ld t0, 0(s0)

blt t0, a0, end

sll t1, t0, 2

add t2, a1, t1

ld t3, 0(t2)

end:

Data Cache

New cache line

Misspeculated region

Block speculative cache

refills

InvisiSpec

• Per load-queue-entry speculation
buffer

• Speculation-aware cache-coherence
policy

Safespec

• Speculation-depth sized “shadow
structures”

• Protect DCache, ICache, TLBs

BOOM Speculation Buffer:

• Hold speculated loads in line-fill-
buffers

22

Prior Work

M. Yan, et. al. 2018. InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy. In MICRO.
K. N. Khasawneh, et. al. 2018. Safespec: Banishing the spectre of a meltdown with leakage-free speculation. Archived.

MSHR N

MSHR 1
Tag Array

23

Life of a Misspeculated Load

0x1

0x3

0x5

0x7

Data Array

MSHR 0

Replay Queue

Load Queue

Outer Memory

ld 0x200

check

tags
Miss,

allocate MSHR

0x200

ldq[4]

Get(0x200)

0xabbccdde

0x2

ld 0x202 ldq[5]

Refill(0x200)To core

Data/tag arrays modified by

unsafe instructions/

Side-channel

MSHR N

MSHR 1
Tag Array

24

Blocking Misspeculated Loads

0x1

0x3

0x5

0x7

Data Array

MSHR 0

Replay Queue

Load Queue

Outer Memory

ld 0x200

check

tags
Miss,

allocate MSHR

0x200

ldq[4]

Get(0x200)

ld 0x202 ldq[5]

Refill(0x200)

To core

Speculation Buffer

0xabbccdde

Data/tag arrays protected from

misspeculation

MSHR N

MSHR 1
Tag Array

25

Blocking Misspeculated Loads

0x1

0x3

0x5

0x7

Data Array

MSHR 0

Replay Queue

Load Queue

Outer Memory

ld 0x200

check

tags
Miss,

allocate MSHR

0x200

Get(0x200)

0xabbccdde

0x2

ld 0x202

Refill(0x200)

To core

Speculation Buffer

0xabbccdde

ld 0x202

0x200

0xabbccdde

Blocking Misspeculated Loads

• Load refills wait in the buffer until one of their misses has committed

• Stall writeback until one of the following occurs
• A load-miss to that line has committed OR

• A store-miss hits that line (stores are non-speculative)

• If all load misses to that line were misspeculated, discard it

• Bypass loads out of the load-fill-buffer
• Subsequent loads “see” the data in the DCache

• Minimizes performance penalty

26

When to commit load refills to the
DCache?

• When the ROB commits the load?
• Most secure.

• Huge performance penalty for load
misses

• When the load is free from branches?
• Does not consider exceptions/interrupts

• Minimal performance penalty

• When the load reaches the
point-of-no-return

• New ROB pointer, tracks instructions
which are guaranteed to commit

27

Committing Loads

1 month implementation time

Microbenchmarks

• Set of assembly routines to test
edge cases

Dhrystone results

• Original: 2176 dps

• W. Speculation buffer: 2216 dps

• Impact: ~2% better IPC

Preliminary physical results in TSMC
45nm

• ~3% larger area

28

Speculation Buffer Results

Version of BOOM

Benchmark Normal

With

Speculation

Buffer

%

Difference

Non-speculative LD

misses to same sets
540 cycles 640 cycles -19%

Non-speculative LD

misses to different sets
264 cycles 297 cycles -11%

MSHR evicted

speculative LD misses
48 cycles 67 cycles -40%

Dhrystone 2176 dps 2216 dps +2%

Comparison

InvisiSpec SafeSpec BOOM Speculation

Buffer

Implementation

Platform

Custom GEM5 Marssx86 BOOM RTL

Buffer size Additional cacheline *

load-queue-size

Additional cacheline *

speculation depth

Repurposed line-fill-

buffers

Commit condition Wait for branch OR

Wait for non-speculative

Wait for branch OR

Wait for commit

Wait for point-of-no-return

Physical design

feedback

CACTI estimates CACTI estimates Trial TSMC 45nm

implementation

Protected components L1D, LLC, multicores L1D, L1I, TLBs L1D

Performance impact -22% performance +3% performance +2% performance

29

Conclusion

30

Conclusion

Demonstrated application of RISC-V ecosystem towards secure
hardware

• Working demonstrations of Spectre attacks on a RISC-V core

• RTL of Spectre mitigation available in an open-source core

Continue improving BOOM security

• Secure other structures: TLBs, ICache, LLC, branch predictors

• Enable secure enclave execution

BOOMv3 Tapeout + More Attacks

• Planning to add Speculation Buffer and CSRs to enable/disable it

• More attacks with different predictors/structures (TAGE, RAS, etc)

31

32

Questions?
Thanks CARRV19!

Links:

• Core: boom-core.org

• Github: github.com/riscv-boom

• FireSim: fires.im

• HAMMER: github.com/ucb-bar/hammer

Thanks:

• Chris Celio, David Kohlbrenner

• UCB ADEPT Lab

Contact: {abe.gonzalez,bkorpan,jzh,edyounis,krste}@berkeley.edu

